
NEURAL NETWORK MODEL INTO POLYNOMIAL FORM 15

APPENDIX

A. Tensors to Matrices

Order
full

tensor terms
unique

terms
reductions

in state
Reduction

ratio
Maximum

reduction ratio
1 m m 0 0 0

2 m2 m(m+1)
2

m2−m
2

1
2
− 1

2m
1
2

3 m3 m(m+1)(m+2)
3!

5m3−3m2−2m
6

5
6
− 1

2m
− 1

3m2
5
6

4 m4 m(m+1)(m+2)(m+3)
4!

23m4−6m3−11m2−6m
24

23
24

− 1
4m

− 11
24m2 − 1

4m3
23
24

...
...

...
...

...
...

d md
∏d

i=1
m+i−1

i
d!−1
d!

TABLE VII
PROGRESSION OF DERIVATIVE ORDER, NUMBER OF TENSOR TERMS, UNIQUE COMBINATIONS, AND REDUCTION RATIO

Order
Derivative

tensor
Dim. of
tensor State

Dim. of
state

Derivative
matrix

Dim. of
matrix

Multinomial state and
coefficient vector

Dim. of multinomial
state and

coefficient vector
0 f(x0) Rn×1

1 J1
f (x0) Rn×m x Rm×1

2 J2
f (x0) Rn×m×m x⊗2 Rm×m×1 J̃2

f (x0) Rn×m(m+1)
2 x̃⊗2,a2 R

m(m+1)
2

×1

...
...

...
...

...
...

...
...

...
d Jd

f (x0) Rn×m×...×m x⊗d Rm×m×1 J̃2
f (x0) Rn×nd x̃⊗d,ad Rnd×1

TABLE VIII
ASCENDING ORDER OF DERIVATIVE WITH ASSOCIATED TENSOR REPRESENTATION, DIMENSION OF TENSOR, STATE REPRESENTATION,

AND DIMENSION OF STATE

Multinomial state
vector term

Equivalent state
tensor term

State
composition Index mapping

x̃⊗2(j) x⊗2(i1, i2) xi1xi2

j = i1 +
i2(i2−1)

2

for i2 = 1 : m, for i1 = 1 : i2

x̃⊗3(j) x⊗3(i1, i2, i3) xi1xi2xi3

j = i1 +
i2(i2−1)

2
+

(i3+1)i3(i3−1)
3!

for i3 = 1 : m, for i2 = 1 : i3, for i1 = 1 : i2

x̃⊗4(j) x⊗4(i1, i2, i3, i4) xi1xi2xi3xi4

j = i1 +
i2(i2−1)

2
+

(i3+1)i3(i3−1)
3!

+
(i4+2)(i4+1)i4(i4−1)

4!

for i4 = 1 : m, for i3 = 1 : i4,for i2 = 1 : i3, for i1 = 1 : i2
...

...
...

...

x̃⊗d(j) x⊗d(i1, i2, · · · , id) xi1xi2 · · ·xid

j = i1 +
i2(i2−1)

2
+ · · ·+

∏d
k=1

id+k−2
k

for id = 1 : m, for id−1 = 1 : id, · · · , for i1 = 1 : i2

TABLE IX
TENSOR TO VECTOR UNFOLDING OF MULTINOMIAL STATE FOR ASCENDING ORDER TERMS

B. Coefficient Tensor Derivations

1) Perceptron Layer with Binary Activation: The simplest activation function is binary, defined by a piece-
wise constant function, given in Table I. The binary activation function is typically the last layer in a network,
answering questions like yes/no in a classification application. For a fully-connected perceptron layer with
binary activation function, the derivatives of this function truncate immediately. The only term in the Taylor
approximation is the 0th term, a0i in (78). Note that the Taylor series is equivalent to the original function
expressions, which shall be the case for any function that is originally in polynomial form. This form is the
most general binary expression, although a common simpler expression relates the only the ith input to the ith

output, given in (79). In this special case, the weight matrix is a square identity matrix and the biases are all
zeros.

NEURAL NETWORK MODEL INTO POLYNOMIAL FORM 16

Multinomial coefficient
vector term

Corresponding
state composition Multinomial coefficient value

a2(j) xi1xi2

= 1
2!

(2
1,1

)
= 2 if i1 ̸= i2

= 1
2!

(2
0,2

)
= 2 if i1 = i2

...
...

...

ad(j) xi1xi2 · · ·xid

= 1
d!

(d
n1,n2,,··· ,nm

)
for n1 = O(x1) ∈ xi1xi2 · · ·xid , · · · , nm = O(xm) ∈ xi1xi2 · · ·xid

TABLE X
MULTINOMIAL COEFFICIENT VECTOR VALUES AND INDICES FOR ASCENDING ORDER TERMS

Derivative
matrix term

Equivalent derivative
tensor term

Corresponding
state composition Index mapping

J̃2
f (:, j) J2

f (:, i1, i2) xi1xi2

j = i1 +
i2(i2−1)

2

for i2 = 1 : m, for i1 = 1 : i2

...
...

...
...

J̃d
f (:, j) J2

f (:, i1, i2, · · · , id) xi1xi2 · · ·xid

j = i1 +
i2(i2−1)

2
+ · · ·+

∏d
k=1

id+k−2
k

for id = 1 : m, for id−1 = 1 : id, · · · , for i1 = 1 : i2

TABLE XI
TENSOR TO MATRIX UNFOLDING OF DERIVATIVE TERM FOR ASCENDING ORDER TERMS

yj = fj(xi = 0)

= a0j =

{
1, if

∑m
i=1 wjixi + bj ≥ 0

0, otherwise

(78)

yi = f(xi = 0)

= a0i =

{
1, if xi ≥ 0

0, otherwise

(79)

2) Perceptron Layer with Linear Activation: The linear activation function is a continuously differentiable
function, typically used in regression applications, given in Table I. The Taylor approximation series truncates
after the 1st order term, given in (80). The 0th and 1st order terms are given in (81) and (82). Much like the
binary expression, the Taylor approximation yields an exact representation to the original function expression.

yj = a0j +

m∑
i=1

A1
jixi (80)

a0j = fj(xi = 0) = bj (81)

A1
ji =

∂fj
∂xi

∣∣∣
xi=0

= wji (82)

3) Perceptron Layer with ReLU Activation: The rectified linear unit activation function is a piece-wise
linear function combining the binary and linear activation functions, given in Table I. The ReLU activation
function is one of the most popular activation functions, used in a variety of different network architectures.
The Taylor approximation series truncates after the 1st order term, identical to the linear case, given in (80).
The 0th and 1st order terms are given in (83) and (84). Much like the binary and linear expressions, the Taylor
approximation yields an exact representation to the original function expression.

a0j =

{
bj , if

∑m
i=1 wjixi + bj ≥ 0

0, otherwise
(83)

A1
ji =

{
wji, if

∑m
i=1 wjixi + bj ≥ 0

0, otherwise
(84)

NEURAL NETWORK MODEL INTO POLYNOMIAL FORM 17

4) Perceptron Layer with Sigmoid Activation: The sigmoid activation function, a special case of a logistic
function, is a continuously differentiable nonlinear activation function, given in Table I. The sigmoid activation
function is one of the most popular activation functions, used in a variety of different network architectures.
An arbitrarily exact Taylor series expansion never truncates as the derivatives are infinitely differentiable.
Realistically, a Taylor approximation series is artificially truncated at a user-defined order d. For ease of defining
the polynomial coefficient terms, the sigmoid function is not explicitly expressed in length, but compactly
represented by the symbol σ(·). The 0th to 2nd order terms are given in (85) to (87) to give a sense of
the iterative pattern. The higher order polynomial coefficient tensors are iteratively derived with immediately
previous polynomial coefficient tensor, given in (23). These equations fully define the polynomial coefficient
tensors for any arbitrary order term to populate the entire Taylor approximation series.

a0j = fj(xi = 0) = σ(bj) (85)

A1
ji =

∂fj
∂xi

∣∣∣
xi=0

= wjiσ(bj)(1− σ(bj))
(86)

A2
ji1i2 = ∂

∂xi2
[
∂fj
∂xi1

]
∣∣∣
xi1

,xi2
=0

= wji1wji2(1− 2σ(bj))σ(bj)(1− σ(bj))
(87)

5) Perceptron Layer with Tanh Activation: The hyberbolic tangent function is a scaled and shifted sigmoid
function, such that the output ranges from [−1, 1]. Like the sigmoid function, the tanh function is nonlinear,
continuously differentiable, and infinitely differentiable. The exact and approximate Taylor series are equivalently
represented by the sigmoid defined Taylor series in (22). For this subsection, the tanh function is compactly
represented by the symbol σ(·). The 0th to 2nd and dth order terms are given in (88) to (24) to give a sense
of the iterative pattern. These equations fully define the polynomial coefficient tensors for any arbitrary order
term to populate the entire Taylor approximation series.

a0j = fj(xi = 0) = σ(bj) (88)

A1
ji =

∂fj
∂xi

∣∣∣
xi=0

= wji(1− σ2(bj))
(89)

A2
ji1i2 = ∂

∂xi2
[
∂fj
∂xi1

]
∣∣∣
xi1 ,xi2=0

= wji1wji2(−2σ(bj))(1− σ2(bj))
(90)

6) Perceptron Layer with Softmax Activation: The softmax activation function is an expression in the
exponential family, given in Table I. Like the binary function, the softmax activation function is typically the
last layer in a network, revealing confidence of classification. Unlike the binary activation function, the softmax
function is infinitely differentiable, which leads to an exact and approximate Taylor series given in (22). The
0th, 1st, and dth order terms are given in (91) to (25) to give a sense of the iterative pattern. This form is
the most general softmax expression, although a common simpler expression relates the only the ith input
to the ith output, given in (93). In this special case, the weight matrix is a square identity matrix and the
biases are all zeros. The Taylor series states and polynomial coefficients can then be simplified to elementwise
exponentiation, instead of vectorwise exponentiation, given in (94). The polynomial coefficients for this special
case are given in (95) and note that the coefficients are independent of the state variation.

a0j = fj(xi = 0) =
1∑m

k=1 e
∑m

i=1 wkixi+bk
ebj (91)

A1
ji =

∂fj
∂xi

∣∣∣
xi=0

=
1∑m

k=1 e
∑m

i=1 wkixi+bk
ebjwji (92)

f(xi = 0) =
1∑m

k=1 e
xk

exi (93)

yi = a0i +A1
ixi +

1
2!A

2
ix

2
i + · · · (94)

a0j = A1
i = Ad

i =
1∑m

k=1 e
xk

(95)

NEURAL NETWORK MODEL INTO POLYNOMIAL FORM 18

7) Perceptron Layer with Probabilistic Activation: Probabilistic activation functions come in many different
types of which the Gaussian or radial basis function is the most popular function, given in Table I. This function
is nonlinear and infinitely differentiable with a singularity at x = ci. Much like the softmax, the Gaussian
activation function is part of the exponential family of expressions, which leads to an exact and approximate
Taylor series given in (22). The 0th to 4th order terms are explicitly given in (96) to (100) to give a sense of
the iterative pattern. A table of αD

t and sDt up to the third term and fourth degree are listed in Table XII and
Table XIII. The most general terms, αD

t and sDt , for any term and degree definition are in (28) and (29).

a0j = fj(xi = 0)

= e−βj ||cj ||
(96)

A1
ji =

∂fj
∂xi

∣∣∣
xi=0

= e−βj ||cj || βjcji
||cj ||

= e−βj ||cj ||α1
1s

1
1

(97)

A2
ji1i2 = ∂

∂xi2
[
∂fj
∂xi1

]
∣∣∣
xi1 ,xi2=0

= e−βj ||cj ||[
2∏

k=1

βjcjik
||cj || (1 +

1
βj ||cj ||) +

−βj

||cj ||]

= e−βj ||cj ||(α2
1s

2
1 + α2

2s
2
2)

(98)

A3
ji1i2i3 = ∂

∂xi3
[∂
∂xi2

[
∂fj
∂xi1

]]
∣∣∣
xi1 ,xi2 ,xi3=0

= e−βj ||cj ||[

3∏
k=1

βjcjik
||cj || [(1 +

2
βj ||cj ||)(1 +

1
βj ||cj ||) + (−1

βj ||cj ||)
2] +

3∑
k=1

βjcjik
||cj || (

−βj

||cj ||)(1 +
1

βj ||cj ||)

= e−βj ||cj ||(α3
1s

3
1 + α3

2s
3
2)

(99)

A4
ji1i2i3i4 = ∂

∂xi4
[∂
∂xi3

[∂
∂xi2

[
∂fj
∂xi1

]]]
∣∣∣
xi1 ,xi2 ,xi3 ,xi4=0

= e−βj ||cj ||[

4∏
k=1

βjcjik
||cj || [(1 +

3
βj ||cj ||)[(1 +

2
βj ||cj ||)(1 +

1
βj ||cj ||) + (−1

βj ||cj ||)
2] + (−3

βj ||cj ||)
2(1 + 2

βj ||cj ||)

+

4∑
k=1

4∑
l=k+1

βjcjik
||cj || (

−βj

||cj ||)[(1 +
2

βj ||cj ||)(1 +
1

βj ||cj ||) + (−1
βj ||cj ||)

2] + 3(
−βj

||cj ||)
2(1 + 1

βj ||cj ||)

= e−βj ||cj ||(α4
1s

4
1 + α4

2s
4
2 + α4

3s
4
3)

(100)

terms →
degree ↓ t = 1 t = 2 t = 3
D = 1 α1

1 = 1

D = 2 α2
1 = (1 + 1

βj ||cj ||
)α1

1 +
dα1

1
dz|0

α2
2 =

−βj

||cj ||
α1
1

D = 3 α3
1 = (1 + 2

βj ||cj ||
)α2

1 +
dα2

1
dz|0

α3
2 =

−βj

||cj ||
α2
1

D = 4 α4
1 = (1 + 3

βj ||cj ||
)α3

1 +
dα3

1
dz|0

α4
2 =

−βj

||cj ||
α3
1 α4

3 = 3(
−βj

||cj ||
)2α2

1

...
...

...
...

D αD
1 = (1 + D−1

βj ||cj ||
)αD−1

1 +
dαD−1

1
dz|0

αD
2 =

−βj

||cj ||
αD−1
1 αD

3 = 3(
−βj

||cj ||
)2αD−2

1

TABLE XII
DEFINITION OF SUBEXPRESSIONS FOR αD

t

NEURAL NETWORK MODEL INTO POLYNOMIAL FORM 19

terms →
degree ↓ t = 1 t = 2 t = 3

D = 1 s11 =
∏1

k=1

βjcjik
||cj ||

D = 2 s21 =
∏2

k=1

βjcjik
||cj ||

s22 =
∏0

l=1(
∑2

k=l

βjcjik
||cj ||

)

D = 3 s31 =
∏3

k=1

βjcjik
||cj ||

s32 =
∏1

l=1(
∑3

k=l

βjcjik
||cj ||

)

D = 4 s41 =
∏4

k=1

βjcjik
||cj ||

s42 =
∏2

l=1(
∑4

k=l

βjcjik
||cj ||

) s43 =
∏0

l=1(
∑4

k=l

βjcjik
||cj ||

)

...
...

...
...

D sD1 =
∏D

k=1

βjcjik
||cj ||

sD−2
2 =

∏D−2
l=1 (

∑D
k=l

βjcjik
||cj ||

) sD3 =
∏D−4

l=1 (
∑D

k=l

βjcjik
||cj ||

)

TABLE XIII
DEFINITION OF SUBEXPRESSIONS FOR sDt

8) Vanilla Recurrent Layer with Binary Activation: The subsequent derivatives that populate a Taylor
expansion of the recurrent layer are identical to feed-forward derivatives with the exchange of the weight
matrix and state representation. The only coefficient term to appear in the Taylor expansion is the 0th order
derivative evaluated at the origin, given in (101).

yj = fj(zl = 0) = a0j =

{
1, if

∑n+m
i=1 vjlzl + bj ≥ 0

0, otherwise
(101)

9) Vanilla Recurrent Layer with ReLU Activation: The Taylor approximation series truncates after the 1st

order term. The 0th and 1st order terms are given in (102) and (103). Much like the binary expression, the
Taylor approximation yields an exact representation to the original function expression.

a0j =

{
bj , if

∑n+m
l=1 vjlzl + bj ≥ 0

0, otherwise
(102)

A1
jl =

{
vjl, if

∑n+m
l=1 vjlzl + bj ≥ 0

0, otherwise
(103)

10) Vanilla Recurrent Layer with Sigmoid Activation: The 0th to 2nd order terms are given in (104) to
(106) to give a sense of the iterative pattern. The higher order polynomial coefficient tensors are iteratively
derived with immediately previous polynomial coefficient tensor, given in (107). These equations fully define
the polynomial coefficient tensors for any arbitrary order term to populate the entire Taylor approximation
series.

a0j = fj(zl = 0) = σ(bj) (104)

A1
jl =

∂fj
∂zl

∣∣∣
zl=0

= vjlσ(bj)(1− σ(bj))(105)

A2
jl1l2 = ∂

∂zl2
[
∂fj
∂zl1

]
∣∣∣
zl1 ,xl2

=0
= vjl1vjl2(1− 2σ(bj))σ(bj)(1− σ(bj))(106)

Ad
jl1···ld =

∂Ad−1
jl1···ld−1

∂σ vjldσ(bj)(1− σ(bj)) (107)

11) Vanilla Recurrent Layer with Tanh Activation: The 0th to 2nd and dth order terms are given in (108)
to (111) to give a sense of the iterative pattern. These equations fully define the polynomial coefficient tensors
for any arbitrary order term to populate the entire Taylor approximation series.

a0j = fj(zl = 0) = σ(bj) (108)

A1
jl =

∂fj
∂zl

∣∣∣
zl=0

= vjl(1− σ2(bj))(109)

A2
jl1l2 = ∂

∂zl2
[
∂fj
∂zl1

]
∣∣∣
zl1 ,zl2=0

= vjl1vjl2(−2σ(bj))(1− σ2(bj))(110)

Ad
jl1···ld =

∂Ad−1
jl1···ld−1

∂σ vjld(1− σ2(bj)) (111)

NEURAL NETWORK MODEL INTO POLYNOMIAL FORM 20

C. Multilayer Approximation

The coefficient matrices a0j and A1
jl in (125) are given in (112) and (113). The coefficient matrices a0l ,

A1
li, A

2
li1i2

, to Ad
li1···id from (126) are given in (114) to (117). The Taylor series expansion of the network with

the sequential layers prior to distributing coefficient tensors is given in (118).

a0j = fj(0) = bOj (112)

A1
jl =

∂fj
∂zl

∣∣∣
zl=0

= wO
jl(113)

a0l = fl(0) = σ(bIl) (114)

A1
li1 =

∂fl
∂xi1

∣∣∣
xi1

=0
= wI

li1(1− σ(bIl)
2)(115)

A2
li1i2 =

∂

∂xi2

[
∂fl
∂xi1

]
∣∣∣
xi1

,xi2
=0

= wI
li1w

I
li2(−2σ(bIl) + 2σ(bIl)

3)(116)

Ad
li1···id =

∂Ad
li1···id−1

∂σ
wI

lid
w(1− σ(bIl)

2) (117)

yj = bOj +
∑
l

wO
jl[σ(b

I
l)+

∑
i1

wI
li1(1−σ(bIl)

2)xi1+
1

2!

∑
i1

∑
i2

wI
li1w

I
li2(−2σ(bIl)+2σ(bIl)

3)x⊗2
i1i2

+· · ·+R(xi)]

(118)
The coefficient matrices a0j to Ad

ji1···id in (130) are given in (119) and (124).

a0j = fj(0) =
∑
l

wO
jlσ(b

I
l) + bOj (119)

A1
ji1 =

∂fj
∂xi1

∣∣∣
xi=0

=
∑
l

wO
jlw

I
li1(1− σ(bIl)

2)(120)

A2
ji1i2 =

∂

∂xi2

[
∂fj
∂xi1

]
∣∣∣
xi=0

=
∑
l

wO
jlw

I
li1w

I
li2(−2σ(bIl) + 2σ(bIl)

3)(121)

A3
ji1i2i3 =

∂

∂xi3

[
∂

∂xi2

[
∂fj
∂xi1

]]
∣∣∣
xi=0

=
∑
l

wO
jlw

I
li1w

I
li2w

I
li3(−2 + 8σ(bIl)

2 − 6σ(bIl)
4)(122)

A4
ji1i2i3i4 =

∂

∂xi4

[
∂

∂xi3

[
∂

∂xi2

[
∂fj
∂xi1

]]]
∣∣∣
xi=0

=
∑
l

wO
jlw

I
li1w

I
li2w

I
li3w

I
li4(16σ(b

I
l)− 40σ(bIl)

3 + 24σ(bIl)
5)(123)

Ad
ji1···id =

∂Ad
ji1···id−1

∂σ
wI

lid
w(1− σ(bIl)

2) (124)

D. Derivation Validation

Fig. 10. A single hidden layer neural network configuration labeling input, intermediate state, output, and learned parameters

NEURAL NETWORK MODEL INTO POLYNOMIAL FORM 21

A popular choice of a single hidden layer neural network configuration includes a hyperbolic tangent
hidden layer and a linear output perceptron layer. To validate the overall Taylor series expansion of the two
layers, a separate Taylor series expansion is derived from a function mapping the input directly to the output.
The Taylor series expansion of each individual layer of this multi-layer neural network is separated into (125)
and (126). The overall Taylor series expansion of the two individual layers is given in (127). By substituting
the coefficient matrices from (112) to (116) [Appendix C] into the combined Taylor expansion in (127) and
after distributing the coefficient tensors, the Taylor series expansion of the network with the sequential layers
is given in (128).

yj = fj(zl) = a0j +
∑
l

A1
jlzl (125)

zl = fl(xi) = a0l +
∑
i1

A1
li1xi1 +

1

2!

∑
i1

∑
i2

A2
li1i2x

⊗2
i1i2

+ · · ·+R(xi) (126)

yj = fj(fl(xi)) = a0j +
∑
l

A1
jl[a

0
l +

∑
i1

A1
li1xi1 +

1

2!

∑
i1

∑
i2

A2
li1i2x

⊗2
i1i2

+ · · ·+R(xi)] (127)

yj =bOj +
∑
l

wO
jlσ(b

I
l)

+
∑
l

∑
i1

wO
jlw

I
li1(1− σ(bIl)

2)xi1

+
1

2!

∑
l

∑
i1

∑
i2

wO
jlw

I
li1w

I
li2(−2σ(bIl) + 2σ(bIl)

3)x⊗2
i1i2

+ · · ·+R(xi)

(128)

To derive the Taylor approximation of the multilayer network directly, the single hidden layer neural network
nonlinear function of this system is explicitly given in (129). The Taylor expansion directly of the explicit
nonlinear input to output mapping is given in (130). The coefficient matrices a0j to Ad

ji1···id in (130) are given
in (119) and (124) [Appendix C]. The Taylor series expansion of the two sequential individual layers and the
overall multilayer network are identical, seen by comparing (128) and (131).

yj = fj(xi) =
∑
l

wO
jlσ(

∑
i

wI
lixi + bIl) + bOj (129)

yj = fj(xi) = a0j +
∑
i1

A1
ji1xi1 +

1

2!

∑
i1

∑
i2

A2
ji1i2x

⊗2
i1i2

+ · · ·+R(xi) (130)

yj =
∑
l

wO
jlσ(b

I
l) + bOj

+
∑
i1

∑
l

wO
jlw

I
li1(1− σ(bIl)

2)xi1

+
1

2!

∑
i1

∑
i2

∑
l

wO
jlw

I
li1w

I
li2(−2σ(bIl) + 2σ(bIl)

3)x⊗2
i1i2

+ · · ·+R(xi)

(131)

E. FLOPS Derivation

1) Polynomial Directly from Data: The entire process of finding the least-squares solution involves a
sequence of large matrix operations. The entire expression is reiterated here for convenience

Ap = Y (X⊗d)T ((X⊗d)(X⊗d)T)−1

This expression can be broken down into the following sequence of steps with their associated flops.

O((X⊗d)(X⊗d)T) = (2t− 1)m
2d

d! (132)

O(((X⊗d)(X⊗d)T)−1) = m3d

d! (133)

NEURAL NETWORK MODEL INTO POLYNOMIAL FORM 22

O(Y (X⊗d)) = (2t− 1)nmd

d! (134)

O(Y (X⊗d)((X⊗d)(X⊗d)T)−1) = (2t− 1)m
2d

d! + m3d

d! + (2t− 1)nmd

d! (135)

≈ tm
d

d! + m3d

d! (136)

2) Polynomial from Neural Network: In calculating the polynomial coefficients, each polynomial term
of ascending degree must be calculated given in (137), where y is the matrix output, A0, A1, · · · , Ad are the
polynomial coefficients from NN parameters, a are the multinomial coefficients, x is the matrix input, and d
is the degree of the polynomial expression.

y =
[
A0 A1 · · ·Ad

]
(a⊙

1

x

...

x⊗d

) (137)

To derive the general form, flops are calculated for each polynomial coefficient matrix in ascending order, where
m is the input state size, n is the output state size, and k is the neural network’s number of neurons. The flops
from calculating A0 is given in .

O(A0
j =

∑
l

wo
jlσ(b

I
l) + boj) = nk (138)

The flops from calculating A1 is given in (139).

O(A1
ji1 =

∑
l

wo
jlw

I
li1(1− σ(bIl)

2) = nkm (139)

The flops from calculating A2 is given in (140).

O(A2
ji1i2 =

∑
l

−2wo
jlw

I
li1w

I
li2(σ(b

I
l)− σ(bIl)

3)) = nkm2 (140)

One can infer the sum of flops from lower order terms that the dth term is given in (141).

O(Ad) = nkmd (141)

The total flops to calculate all terms is given in (142).

O(
[
A0 A1 · · ·Ad

]
) = nk + nkm+ nkm2 + · · ·+ nkmd (142)

If m > 1, this sum does not converge but diverges. The dominant term is thus the last, largest term nkmd.

	Appendix
	Tensors to Matrices
	Coefficient Tensor Derivations
	Perceptron Layer with Binary Activation
	Perceptron Layer with Linear Activation
	Perceptron Layer with ReLU Activation
	Perceptron Layer with Sigmoid Activation
	Perceptron Layer with Tanh Activation
	Perceptron Layer with Softmax Activation
	Perceptron Layer with Probabilistic Activation
	Vanilla Recurrent Layer with Binary Activation
	Vanilla Recurrent Layer with ReLU Activation
	Vanilla Recurrent Layer with Sigmoid Activation
	Vanilla Recurrent Layer with Tanh Activation

	Multilayer Approximation
	Derivation Validation
	FLOPS Derivation
	Polynomial Directly from Data
	Polynomial from Neural Network

